Factorization of self-adjoint ordinary differential equations

نویسنده

  • Dumitru I. Caruntu
چکیده

Keyword: Factorization method Self-adjoint differential equations Eigenvalue problems This paper deals with the factorization of self-adjoint differential operators Lð2nÞ 1⁄4 1 q d n dx qb d n dx , and their spectral type differential equations. Sufficient conditions of factorization are reported. A large class of differential operators and equations that can be factorized is obtained. The factorizations of fourthand sixth-order operators and equations are explicitly given. A particular fourth-order spectral type differential equation in which qðxÞ 1⁄4 ð1 xÞð1þ xÞ, p P 1; q P 1, is considered. Its general solution is obtained in terms of hypergeometric functions. As application, the natural frequencies and mode shapes of mechanical transverse vibrations of a nonuniform structure are found. 2013 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterization of Positive Self-adjoint Extensions and Its Application to Ordinary Differential Operators

A new characterization of the positive self-adjoint extensions of symmetric operators, T0, is presented, which is based on the Friedrichs extension of T0, a direct sum decomposition of domain of the adjoint T ∗ 0 and the boundary mapping of T ∗ 0 . In applying this result to ordinary differential equations, we characterize all positive self-adjoint extensions of symmetric regular differential o...

متن کامل

Self-adjoint commuting differential operators of rank two

This is a survey of results on self-adjoint commuting ordinary differential operators of rank two. In particular, the action of automorphisms of the first Weyl algebra on the set of commuting differential operators with polynomial coefficients is discussed, as well as the problem of constructing algebro-geometric solutions of rank l > 1 of soliton equations. Bibliography: 59 titles.

متن کامل

On the adjoint formulation of design sensitivity analysis of multibody dynamics cs

Numerical methods for design sensitivity analysis of multibody dynamics are presented. An analysis of the index-3 adjoint differential-algebraic equations is conducted and stability of the integration of the adjoint differential-algebraic equations in the backward direction is proven. Stabilized index-1 formulations are presented and convergence of backward differentiation formulas is shown for...

متن کامل

Complex Symplectic Spaces and Boundary Value Problems

This paper presents a review and summary of recent research on the boundary value problems for linear ordinary and partial differential equations, with special attention to the investigations of the current authors emphasizing the applications of complex symplectic spaces. In the first part of the previous century, Stone and von Neumann formulated the theory of self-adjoint extensions of symmet...

متن کامل

Method of Factorization of Ordinary Differential Operators and Some of Its Applications

The paper is dedicated to analytical and algebraic approaches to the problem of the integration of ordinary differential equations. The first part is devoted to linear ordinary differential equations of the second and nth orders, while the second deals with nonlinear ordinary differential equations. Factorization of nonlinear equations of the second and the third orders both through commutative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 219  شماره 

صفحات  -

تاریخ انتشار 2013